
Building BittWare’s Packet Parser Using HLS vs. P4

Introduction
One of the features of both BittWare’s SmartNIC Shell and
BittWare’s Loopback Example is a packet parser/classifier that
extracts protocol fields from packets. The fields are called
tuples and are added to each packet’s metadata that the user’s
application can utilize. See the sidebars for more details on
how packet parsers and the tuple fields are used.

With this white paper, we not only wanted to describe our
Parser, but explain how using HLS to build and configure
it has resulted in a better implementation than using the
P4 language. The Parser code is available on the BittWare
developer website for free to Xilinx Ultrascale+ card owners as
part of our Loopback Example (January 2020 availability)

Moving Beyond P4 for Programming Smart-
NICs
Today the Parser component of BittWare’s SmartNIC Shell is
built using the Xilinx HLS C++ development environment. But
an earlier revision of BittWare’s SmartNIC Shell used the P4
language though the Xilinx SDNet tool.

One reason to use P4 is that it’s an emerging standard popular
among people embracing software-defined networking (SDN)
on commodity Intel servers. However, Xilinx later restricted
the availability of SDNet. Our use of P4 was specifically for
end-users of SmartNIC Shell, so this restriction caused us to
search for a more open solution. Following the success of
our RSS implementation using HLS, we were motivated to
re-implement the SmartNIC Shell parser using this same HLS
approach (specifically the Xilinx HLS C++ environment).

White Paper

What is a “Tuple”?
In networking, tuples are fields extracted from
networking packets and grouped together. The most
common is the “5-tuple” which combines source and
destination IP address, source and destination IP port (if
the IP protocol has them), and the IP protocol number.

The BittWare Parser in the SmartNIC offering examines
packets and extracts up to a 4-tuple if available. It
places that data into a 96-bit field added to the packet
metadata. That field width provides enough bits for the
IPv4 source and destination address as well as source
and destination port. Our Parser provides zeros for fields
that are not available in the packet. If a packet does not
include any IP payload, the full 96-bit tuple field is zero.

A full 5-tuple would require an additional 8 bits to
accommodate the protocol number. HLS users of
BittWare’s parser can easily accommodate that change
with minor source code changes.

BittWare’s RSS is an example of a block that might follow
the parser in the packet pipeline and consume the 96-bit
tuple data. Read about that block in our white paper
comparing RTL to HLS C++, which is available on the
BittWare website.

The Parser is used differently in BittWare’s Loopback
example. The Loopback uses three copies of the Parser,
as opposed to a single copy that expands metadata. This
approach was taken because the Parser is actually quite
small.

https://www.bittware.com/resources/comparing-rtl-to-hls/
https://www.bittware.com/resources/comparing-rtl-to-hls/

Having essentially created two versions of a packet parser, we
noted some differences between using P4 versus HLS C++.
Overall, the HLS flow is less abstract than P4, but the tool is far
more mature.

Details of resource usage are in the table:

Characteristic P4/SDNet HLS C++

CLBs 3,185 3,391

BRAM 22 0

Registers 10,361 5,975

Lines of Code 206 1,154

Building BittWare’s Packet
Parser Using HLS vs. P4

You can see that across all FPGA resources, HLS is either similar
or better. While the source code does require more lines, part
of that is impacted by comments and formatting. However, it is
true that an HLS C++ implementation is always going to need
more lines of code than P4. That’s for a packet parser/classifier
though, which falls under the scope of what P4 can describe—
HLS C++ can do more. HLS is very general purpose and can
pretty much do anything. P4 is very specialized.

Even better, now that the HLS implementation exists, any
follow-on effort to modify it to digest an Ethernet protocol
variation is roughly the same as doing the modification in the
P4 language. This is because our HLS C++ implementation is
structured as a sequence of calls to low-level parser functions
that we created. This approach is analogous to directly
manipulating the runtime that sits under P4.

As noted, the source code for the Loopback Example,
including its Parser block, is available for free to Ultrascale++
owners through the BittWare Developer site. It is an excellent
illustration of how to use AXI interfaces within HLS C++ code.
Want to see it but don’t have a BittWare FPGA card? Get in
touch with us for where to buy.

BittWare IP Block Interfaces
The HLS C++ tool flow needs to have built-in awareness of the
interface protocols used. IP blocks from BittWare generally
use Advanced eXtensible Interface (AXI) to communicate.
Specifically, an AXI4-Stream to pass packet data and AXI4-Lite
as a control plane. Xilinx documents AXI here:

https://www.xilinx.com/support/documentation/ip_
documentation/axi_ref_guide/v13_4/ug761_axi_reference_
guide.pdf

For 100 GbE, BittWare uses an AXI4-Stream interface that is 512
bits wide and clocked at 300 MHz. The metadata associated
with each packet follows on its own bus that is valid at the end
of a packet, when the packet data’s TLAST signal is asserted.
The packet metadata evolves between blocks and between
releases.

What is a Packet Parser?
The protocols used over Ethernet are challenging for
hardware to leverage. This challenge exists because
the protocols have many optional fields. Those options
make it complicated to find, for example, the start of
an IP header. Why? In the IP header case, there can be
zero, one, or two VLAN tags in front of it. There can also
be MPLS tags. Thus hardware needs to understand the
protocol just enough to find the IP header. Hardware
needs the IP header in order to find IP addresses which
are often used in hardware filters and tables. Similar
problems exist at the next level as the IP header itself
has optional fields.

BittWare’s HLS C++ packet parser can deal with:

•	 0 to 2 VLAN tags (the old SDNet code allowed 0 or 1)

•	 0 to 5 MPLS tags (BittWare’s old SDNet code did not
recognize MPLS)

•	 IP fragments

•	 IPv4 headers (not IPv6)

•	 It assumes port IDs are found in these IP protocols:
TCP, UDP, DCCP, and STCP

https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_referenc
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_referenc
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_referenc

Building BittWare’s Packet
Parser Using HLS vs. P4

 It usually includes information about:

•	 The number of the physical Ethernet connector that
the packet arrived on

•	 Any errors the MAC identified associated with the
packet

•	 A timestamp in 80-bit IEEE-1588 format or
sometimes in a shortened 64-bit format

•	 A “deleted” bit to indicate the packet needs to be
removed from the stream at the next opportunity

•	 A number we usually call “queue” to indicate a
destination for the packet. It is calculated by one of
the IP blocks in the pipeline (maybe even this block)

Our control plane for the parser block includes:

•	 An enable/disable bit

•	 A bit that forces generating a 2-tuple even if the
packet contains 4-tuple data

The P4 language was created to define a “packet
forwarding data plane” (or network switch) using software.
The language is particularly associated with hardware
vendor Barefoot Networks. The P4 language is distinct
from something called “P4 Runtime” which Google helps
promote. P4 Runtime presents a standard runtime API
that enables manipulating the control plane of solutions
compiled by P4.

P4 does make it easy to define a packet classifier/parser
for a new protocol. P4 also specifies a complete set of
table lookup functions, and it can rewrite packets that
flow through, eliminating VLAN tags, for example.

Does this mean that the flexibility of P4 will lead to
adoption for FPGAs? There are several reasons we see
against this happening.

Commercial options to provide a subset of P4 on FPGA
hardware exist, however they are currently limited in
scope. Furthermore, as noted earlier, the commercial

Will P4 Become Common for FPGA Hardware?

terms make it difficult for BittWare to leverage these to
create an example program that we can provide free with
our products.

It’s important to note that no real-world FPGA application
can be exclusively written in P4. For example, the Receiver
Side Scaling (RSS) block that follows our Parser in some
examples cannot be authored in P4. However, HLS C++
can be used to author either block, or even a single block
that combines the two functions.

Also, the P4 table lookup functions are basically a wrapper
on hardware-specific runtime libraries written in RTL or
HLS C++. Programmers can call such runtimes directly
from HLS C++ with no penalty.

The bottom line is that after using both P4 and HLS C++
to implement a parser, we actually favor the HLS C++
approach. It isn’t clear that demand for P4 on FPGAs will
grow large enough to support a mature tool. HLS C++ can
do more and is more mature.

To learn more, visit the BittWare website at www.bittware.com.

Rev 2019.12.12 | December 2019

UltraScale+ is a registered trademark of Xilinx Corp. All other products are the trademarks or registered
trademarks of their respective holders.

Portability of HLS and Conclusion
We hope the explanation of two implementations of a packet
parser on an FPGA, one in the P4 language and then using HLS
C++, are helpful in evaluating the right approach for you.

One final note is regarding portability between our FPGA
cards. Between our Xilinx FPGA-based cards, HLS provides an
easy method with few, if any, changes needed. For moving
to an Intel-based card, such as our 520N-MX, source code
changes will be required, particularly with respect to compliler
pragmas. However, the basic concepts are identical. In both
cases we are structuring C++ based upon our knowledge of
FPGA translation challenges. Arbitrary C++ code will run very
poorly inside an FPGA. However, C++ code restructured and
anointed with pragmas works very well. The changes required
for Xilinx or Intel are very similar but just expressed a little
differently.

As part of BittWare’s SmartNIC Shell, our Parser helps teams get
up to speed quickly for building network packet processing
applications on our FPGA cards. Learn more about SmartNIC
for our cards or get in touch with us to talk about your
application needs.

BittWare’s Loopback example redeploys a subset of the
SmartNIC shell that we can offer at no charge. That subset
includes our Parser library.

Building BittWare’s Packet
Parser Using HLS vs. P4

